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Résumé : Dans ce travail, nous abordons la question de l’apprenabilité
de classes de concepts sous différents modèles de bruit de classification
dans le cadre d’apprentissage probablement approximativement correct
– probably approximately correct.

Après avoir introduit le modèle de bruit CCCN (Class-Conditional Clas-
sification Noise) qui suppose un bruit de classification conditionnel à
chaque classe, nous montrons que les classes de concepts apprenables
sous le modèle CN (uniform Classification Noise), modèle de bruit de
classificati on constant ou uniforme, sont également, CCCN-apprenables.
Ce premier résultat nous conduit à CN=CCCN si l’on fait l’abus de nota-
tion qui consiste à apparenter le modèle de bruit considéré et l’ensemble
des classes de concepts apprenables sous ce modèle de bruit.

Partant de ce résultat, nous montrons l’égalité entre l’ensemble des classes
de concepts CN-apprenables et celui des classes de concepts apprenables
sous le modèle de bruit CPCN (Constant-Partition Classification Noise),
modèle qui suppose un bruit de classification constant par morceaux, où
les régions de bruit constant sont délimitées par une partition de l’espace
étiqueté. Ce résultat nous fournit ainsi l’égalité CN=CPCN.

Mots-clés : PAC apprenabilité, bruit de classification uniforme, bruit
de classification constant, bruit de classification conditionnel aux classes,
bruit de classification constant par morceaux.

1 Introduction

This paper presents a study in the probably approximately correct (PAC) frame-
work. In particular, we investigate the equality of concept classes in different
classification noise settings from the learnability standpoint.
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More precisely, we study three different noise settings: the uniform classifica-
tion noise setting CN (Angluin & Laird, 1988), the class-conditional classifica-
tion noise setting CCCN and the constant partition classification noise setting
CPCN (Decatur, 1997). The second setting is a particular case of the latter and
it is characterized by a noise process that flips the label of an example accord-
ing to unifom classification noise processes defined on each (positive or negative)
class. This setting is therefore a generalization of the uniform classification noise
setting where noise is added independently of the class of the examples.

Our first contribution is the formal proof that CN = CCCN, that is, the
concept classes that are learnable (in the PAC sense) under the CN framework
(these classes are said to be CN-learnable) are also learnable under the CCCN
(they are therefore CCCN-learnable) framework, and conversely. The idea to
prove this result is that it is possible to bring a CCCN learning problem down
to a CN learning problem by an appropriate addition of noise to the labelled
examples of the CCCN problem.

Our second contribution is the proof that CN = CPCN, that is, the concept
classes that are CN-learnable are CPCN-learnable, and conversely. The under-
lying idea of the proof is that a CPCN learning problem can be decomposed into
several CCCN learning problems.

The paper is organized as follows. Section 2 briefly recalls the notion of PAC-
learnability and formally presents and/or recalls the different noise settings to-
gether with the corresponding definitions of CN-learnability, CCCN-learnability
and CPCN-learnability. Section 3 gives the proof of CN = CCCN while section 4
develops that of CN = CPCN. A short discussion on possible relaxation of noise
constraints is provided in section 5.

2 Preliminaries

2.1 Learning in the PAC Framework

In the classical PAC learning framework, the problem of concept learning can
be stated as follows (Valiant, 1984). Let X be a space (e.g. Rn or {0, 1}d),
subsequently referred to as the input space. Let c be some concept from a concept
class C (basically, C is a subset of X ) and D some fixed but unknown distribution
on X from D, the set of all the distributions on X . The task of learning is that
of identifying c given access only to a sampling oracle EX(c,D), such that each
call to EX(c,D) outputs a pair 〈x, t(x)〉, with x ∈ X drawn randomly according
to D and t(x) = 1 if x ∈ c and t(x) = 0 otherwise (i.e. t is the indicator
function of c). C is said to be efficiently PAC-learnable, if, there is an algorithm
A such that for every concept c in C, for every distribution D over X , for every
ε > 0 and for every δ > 0, A, when given access to EX(c,D), outputs with
probability at least 1− δ a hypothesis h ∈ H, where H is a representation class
over X , such that the probability errD(h) := Px∼D(h(x) 6= t(x)) of disagreement
between h and t on instances randomly drawn from D is lower than ε (Kearns &
Vazirani, 1994); δ > 0 is referred to as the confidence parameter (although the
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confidence is actually 1 − δ), ε > 0 as the precision and errD(h) is the error of
h. There must be two polynomials p(·, ·) and q(·, ·), such that in order to draw a
hypothesis h, A needs at most p( 1

ε , 1
δ ) training examples and it runs in at most

q( 1
ε , 1

δ ) time. These two polynomials should also take as another argument the
size of the concept c to be learned, but as it will not play any explicit role in our
discussion, we have decided for sake of clarity not to mention it in the sample
size and time requirements.

2.2 CN, CPCN and CCCN Learnability

In the framework of uniform Classification Noise (CN) concept learning (Angluin
& Laird, 1988), the oracle to which the learning procedure has access is defined
as follows (Angluin & Laird, 1988).

Definition 1 (CN oracle EXcn(c,D))
Let η ∈ [0; 1]. Given c ∈ C and D ∈ D, the uniform Classification Noise oracle
EXcn(c,D) outputs a pair 〈x, tη(x)〉 according to the following procedure:

1. x is drawn randomly according to D;

2. tη(x) is set as

tη(x) :=
{

t(x) with prob. 1− η
¬t(x) with prob. η.

The notion of CN-learnability, defined by (Angluin & Laird, 1988) readily fol-
lows.

Definition 2 (CN-learnability)
A concept class C is efficiently CN-learnable by representation class H iff there
exist an algorithm A and polynomials p(·, ·, ·) and q(·, ·, ·) such that for any c ∈ C,
for any D ∈ D, for any ε > 0, for any δ ∈]0; 1] and for any η ∈ [0; 0.5[, when
given access to EXη

cn(c,D) and given inputs ε, δ and an upper bound η0 < 0.5
on η, A outputs with probability at least 1 − δ a hypothesis h ∈ H such that
errD(h) ≤ ε.

To output such an hypothesis A requires at most p( 1
ε , 1

δ , 1
1−2η0

) training sam-

ples and it runs in q( 1
ε , 1

δ , 1
1−2η0

) time.

Remark 1
Here, we have assumed the knowledge of an upper bound η0 on the actual noise
η. As stated in (Angluin & Laird, 1988) and (Kearns & Vazirani, 1994), this
assumption is not restrictive since it is possible to guess a value for η0 when none
is provided. The classes of concepts that can be CN-learned with a provided
bound η0 are therefore exactly the same as the ones that can be CN-learned
without any knowledge of an upper bound on η.

As for CPCN-learnability, introduced in (Decatur, 1997), this setting assumes
a set of partition functions Π = {π1, . . . , πk} defined on the labeled space X ×Y
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and taking values in {0, 1} such that
∑k

i=1 πi(〈x, y〉) = 1 for any pair 〈x, y〉 from
X × Y and it assumes a CPCN oracle as defined by (Decatur, 1997).

Definition 3 (CPCN oracle EXΠ,η
cpcn(c,D))

Let Π = {π1, . . . , πk} a set of partition functions over X ×Y and η = [η1 . . . ηk],
with ηi ∈ [0; 1]. Given c ∈ C and D ∈ D, the CPCN oracle EXΠ,η

cpcn(c,D) outputs
a labeled example 〈x, tη(x)〉 as follows:

1. x is drawn according to D;

2. if i is the index such that πi(〈x, t(x)〉) = 1 then

tη(x) :=
{

t(x) with prob. 1− ηi

¬t(x) with prob. ηi.

The next definition is that of CPCN-learnability (Decatur, 1997).

Definition 4 (CPCN-learnability)
A concept class C is efficiently CPCN-learnable by representation classH iff there
exist an algorithm A and polynomials p(·, ·, ·) and q(·, ·, ·) such that for any set
Π = {π1, . . . , πk} of partition functions, for any η = [η1 · · · ηk], with ηi ∈ [0; 1/2[,
for any c ∈ C, for any D ∈ D, for any ε > 0 and for any δ ∈]0; 1], when given

access to EXΠ,η
cpcn(c,D) and given inputs ε, δ and an upper bound η0 < 0.5 on

the noise rates ηi, A outputs with probability at least 1− δ a hypothesis h ∈ H
such that errD(h) ≤ ε.

To output such an hypothesis A requires at most p( 1
ε , 1

δ , 1
1−2η0

) training sam-

ples and it runs in q( 1
ε , 1

δ , 1
1−2η0

) time.

In order to prove our main result, that is, CN = CPCN, we will focus on
the specific CPCN case where Π = {π+, π−} and η = [η+ η−] with π+(x, y) =
y and π−(x, y) = 1 − y. A CPCN oracle EXΠ,η

cpcn defined along this setting
corresponds to the case where different classification noises are applied to positive
and negative examples, as illustrated on Figure 1. From now on, we refer to the
problem of learning in this particular framework, i.e., with Π = {π+, π−}, η =
[η+ η−] and the corresponding CPCN oracle, as the problem of learning under
Class-Conditional Classification Noise (CCCN); the corresponding oracle will
hence be denoted as EXη

cccn. CCCN-learnability is defined in a straightforward
way as in Definition 4.

3 CN=CCCN

The main theorem of this section states that the class CN of concepts that are
learnable under the uniform classification noise model is the same as the class
CCCN of concepts that are learnable under the class-conditional classification
noise model:
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Figure 1: Left: classical (noise free) concept learning setting showing 26 positive
examples (black discs) and 37 negative examples (white discs); η+ = 0 and
η− = 0. Right: Class-Conditional Noise concept learning setting; the values of
η+ and η− might be η+ = 8/26 and η− = 13/37.

Theorem 1
CCCN = CN.

CCCN ⊆ CN is obvious: if c ∈ C is a concept from a class C that is CCCN-
learnable with any noise vector η = [η+ η−] given a noise upper bound on η0

then it is still learnable when η+ = η−, i.e. it is CN-learnable (with the same
noise upper bound η0).

3.1 Sketch of the Proof

The proof of Theorem 1 proceeds in three steps. First, we show (Lemma 1) that
from noisy oracle EXη

cccn, it is possible to construct another CCCN noisy oracle
EX η̄

cccn whose noise vector η̄ = [η̄+ η̄−] depends on two ’renoising’ control
parameters ρ and s. In addition, we observe that there exists a specific pair
(ρopt, sopt) of values that allows to turn a CCCN learning problem into CN
learning problem.

Secondly, we show (Lemma 2) that it suffices to know a sufficiently accurate
approximation ρ to ρopt (with the correct setting of the corresponding s) to
’almost’ meet the requirements for PAC-learnability from the CCCN-oracle.

Then, it is proved that knowing η0 < 0.5 such that η+, η− ≤ η0 makes it
possible to learn any CCCN concept that is CN-learnable (Proposition 1). This
concludes the proof of Theorem 1.

3.2 Formal Proof

Lemma 1
Let c ∈ C and D ∈ D. Let EXη

cccn(c,D) be the CCCN oracle with noise
vector η = [η+ η−] with η+, η− ∈ [0; 1]. Given parameters ρ ∈ [0; 1] and
s ∈ {0, 1}, the procedure that returns a pair 〈x, tη̄(x)〉 by (1) polling a labelled
example 〈x, tη̄(x)〉 from EXη

cccn and (2) setting tη̄ to FlipLabel(ρ, s, tη(x)) (cf.
Algorithm 1) simulates a call to a CCCN-oracle EX η̄

cccn(c,D) of noise vector
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Algorithm 1 FlipLabel
Input: ρ ∈ [0; 1], s ∈ {0, 1}, l ∈ {0, 1}
Output: tρ,s ∈ {0, 1}

Draw a random number r uniformly in [0; 1]
if s = l then

tρ,s := l
else

if r ≤ ρ then
tρ,s := 1− l

else
tρ,s := l

end if
end if
return tρ,s

η̄ = [η̄+ η̄−] with η̄+, η̄− ∈ [0; 1] and such that

η̄+ = (1− ρ)η+ + (1− s)ρ

η̄− = (1− ρ)η− + sρ.

Proof. Let c ∈ C, D ∈ D, ρ ∈ [0; 1] and, for sake of exposition, suppose that
s = 1.

The procedure described in the lemma together with the way FlipLabel is
defined (cf. Algorithm 1) is such that P (tη̄(x) = 1|tη(x) = 1) = 1 and
P (tη̄(x) = 1|tη(x) = 0) = ρ. We therefore have the probabilities of flipping
the class t(x) of a random example x to the opposite class 1− t(x) given by (we
drop the dependence on x)

η̄+ = P (tη̄ = 0|t = 1)
= P (tη̄ = 0, tη = 0|t = 1) + P (tη̄ = 0, tη = 1|t = 1)
= P (tη̄ = 0|tη = 0)P (tη = 0|t = 1)

+ P (tη̄ = 0|tη = 1)P (tη = 1|t = 1)

= (1− ρ̂)η+,

and

η̄− = P (tη̄ = 1|t = 0)
= P (tη̄ = 1, tη = 1|t = 0) + P (tη̄ = 1, tη = 0|t = 0)
= P (tη̄ = 1|tη = 1)P (tη = 1|t = 0)

+ P (tη̄ = 1|tη = 0)P (tη = 0|t = 0)

= ρ + η−(1− ρ),

which corresponds to the expressions for η̄+ and η̄− provided in the lemma. It is
straightforward to check that when s = 0 we do also recover these expressions.
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Checking that η̄+, η̄− are in [0; 1] is straightforward: both η̄+ and η̄− are
bounded from above by (1 − ρ) max(η+, η−) + ρ, which, since 1 − ρ ≥ 0 and
max(η+, η−) ∈ [0; 1], is upper bounded by (1− ρ) · 1 + ρ = 1.

�

Remark 2
This lemma has the direct consequence that it is possible to get a CN oracle
from a CCCN oracle as soon as the noise parameters of the CCCN oracle are
known. Indeed, if EXη

cccn(c,D) is a CCCN oracle of known noise vector η =
[η+ η−] then using ρopt := |η+−η−|

1+|η+−η−| and setting sopt := 1 if η+ > η− and 0
otherwise allows to obtain a CN oracle. This CN oracle has its noise equal to

ηopt := η̄+ = η̄− = max(η+,η−)
1+|η+−η−| .

Remark 3
If only an upper bound η0 < 0.5 is known on the noise rates η+ and η− of a
CCCN oracle EXη

cccn(c,D) then it is straightforward to see that ρopt ≤ η0 and
that the noise of the CN oracle obtained from EXη

cccn(c,D) by adding noise to
one of the classes is also upper bounded by η0.

Lemma 2
Let C be a concept class on X that is CN-learnable by representation classH. Let
Aη be an algorithm that CN-learns C (with any noise rate η ∈ [0; 1/2[); p(·, ·, ·)
and q(·, ·, ·) are polynomials (in 1/ε, 1/δ, 1/(1−2η), respectively) for Aη’s sample
size and time requirements.

Let η+, η− ∈ [0; 0.5[ be the (actual) unkown noise levels for the positive class
and the negative class. Assume that we know a value η0 < 0.5 such that η+ ≤ η0

and η− ≤ η0 and that we know whether η+ ≥ η−.
There exists an algorithm A such that for any c ∈ C, for any D ∈ D, for any

ε > 0, for any δ > 0, for any ∆ ∈]0; 1], for ` := p(1/ε, 1/δ, 1/(1 − 2η0) and
τ := ∆

2` , for any ρ ∈ [0; 1] verifying |ρ− ρopt| < τ , for s := 1 (η+ ≥ η−), A, when
given inputs ε, δ, ρ, s, Aη, ` and η0 and given access to EXη

cccn(c,D), outputs
with probability 1− δ −∆ a hypothesis h ∈ H verifying

errD(h) ≤ ε.

In order to output h, A requires a polynomial number of labeled data and runs
in polynomial time.

Proof. The idea of the proof is that if ρ is not too far from ρopt and s is set
to the correct value (either 0 or 1) then the oracle resulting from the procedure
specified in Lemma 1 is ’almost’ a CN oracle and c can therefore be learned
under D by Aη.

Let us fix ε > 0, δ > 0, c ∈ C and D ∈ D. We assume, without loss of
generality, that η+ ≥ η− and that, as a consequence, the indicator function
1 (η+ ≥ η−) takes the value 1. We also fix ρ such that |ρ− ρopt| < τ .
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Algorithm 2 ApproximateLearn
Input: ε > 0, δ > 0, ρ ∈ [0; 1], s ∈ {0, 1}, Aη that CN-learns C with q(·, ·, ·)

running time, ` ∈ N, η0 ∈ [0; 1/2[
Output: h ∈ H

Build the CCCN oracle EX η̄
cccn(c,D) using ρ and s as in Lemma 1

Draw a sample S = {〈x1, t
η̄(x1)〉, . . . , 〈x`, t

η̄(x`)〉} of size ` from EX η̄
cccn(c,D)

Input S, ε and δ to Aη with the upper bound on η set to η0

if the running time of Aη gets longer than q(1/ε, 1/δ, 1/(1− 2η0)) then
stop Aη and return ∅

else
return the hypothesis h ∈ H output by Aη

end if

We show that a call to ApproximateLearn (cf. Algorithm 2) with the inputs ε,
δ, ρ, s, Aη, ` and η0 outputs with probabily 1− δ −∆ a hypothesis h ∈ H such
that err(h) ≤ ε.

We know from Remark 3, that ηopt, the noise of the CN oracle obtained when
using the procedure of Lemma 1 with ρopt and sopt is bounded from above by
η0. Therefore, ` set as in the lemma ensures that if Aη is provided with `
labeled sample from a CN-oracle with noise lower than η0, then it outputs with
probability 1 − δ a hypothesis having error not larger than ε. In addition, the
running time to output such an hypothesis will not exceed q(1/ε, 1/δ, 1/(1−2η0)).
The following analysis, which builds on an idea of (Goldberg, 2005), shows that
it is possible with high probability to draw from EXη

cccn samples of size ` that
can be interpreted as samples drawns from the CN oracle having noise ηopt.

We observe that the generation of a set Sηopt of ` examples from EX
ηopt
cn (c,D),

where ηopt is the noise rate as provided in Remark 2, can be summarized as
follows:

• Sηopt = ∅

• for i = 1, . . . , `

– draw a random number ui uniformly in [0; 1]

– draw a labeled example 〈xi, t(xi)〉 from (noise-free) oracle EX(c,D)

– if ui ≤ ηopt then

∗ Sηopt ← Sηopt ∪ {〈xi,¬t(xi)〉}
– else

∗ Sηopt ← Sηopt ∪ {〈xi, t(xi)〉}.

We consider oracle EX η̄
cccn obtained from EXη

cccn using the procedure described
in Lemma 1 with input ρ and s. The generation of a set S η̄ of ` samples using
EX η̄

cccn can be summarized as follows:

• S η̄ = ∅
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• for i = 1, . . . , `

– draw a random number ui uniformly in [0; 1]
– draw a labeled example 〈xi, t(xi)〉 from (noise-free) oracle EX(c,D)
– if t(xi) = 1 and ui ≤ (1− ρ)η+ then
∗ S η̄ ← S η̄ ∪ {〈xi, 0〉}

– else if t(xi) = 1 and ui > (1− ρ)η+ then
∗ S η̄ ← S η̄ ∪ {〈xi, 1〉}

– else if t(xi) = 0 and ui ≤ η− + ρ(1− η−) then
∗ S η̄ ← S η̄ ∪ {〈xi, 1〉}

– else
∗ S η̄ ← S η̄ ∪ {〈xi, 0〉}.

Now, if we consider two sets Sηopt and S η̄ of ` samples from EX
ηopt
cn and

EX η̄
cccn, respectively, using the same sequences of xi and ui, we have:

P (Sηopt 6= S η̄) = P (tηopt

1 6= tη̄1 ∨ . . . ∨ t
ηopt

` 6= tη̄` )
≤ `P (tηopt(x) 6= tη̄(x)) (union bound)

= `
(
p · |ηopt − (1− ρ)η+|
+(1− p) · |ηopt − η− − ρ(1− η−)|

)
≤ `

(
|ρ− ρopt|η+ + |ρ− ρopt|(1− η−)

)
(Remark 2)

≤ ` (τ + τ) (assumption)

≤ ` · 2∆
2`

(definition of τ)

= ∆,

where t
ηopt

i := tηopt(xi), tη̄i := tη̄(xi), p := P (t(x) = 1) and where the depen-
dency on x has been dropped when clear.

Hence, when drawing a labeled sample S η̄ of size ` from EX η̄
cccn(c,D), the

probability with which S η̄ may not have been produced by sampling from
EXη

cccn(c,D) is at most ∆.
When given access to a sample of size ` from EX η̄

cccn(c,D), as well as other
input parameters, Aη has a probability at most δ + ∆ to fail in outputting a
hypothesis having error lower than ε. This concludes the proof.

�

Proposition 1
Any concept class that is efficiently CN-learnable is also efficiently CCCN-
learnable: CN ⊆ CCCN.

More precisely, for every CN-learnable class there is an algorithm A such that
for any concept c and any distribution D, for any ε > 0 and δ > 0, for any noise
vector η = [η+ η−] with η+, η− ≤ η0 < 0.5, when given access to EXη

cccn(c,D),
A outputs with probability 1− δ a hypothesis h such that errD(h) ≤ ε.
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Algorithm 3 LearnWithUpperBound
Input: ε > 0, δ > 0, η0 < 0.5, Aη that CN-learns C with p(·, ·, ·) sample size
Output: a hypothesis h ∈ H

H := ∅
∆ := δ

4
ε′ := ε

4 (1− 2η0)
δ′ := δ

4
` := p( 1

ε′ ,
1
δ′ ,

1
1−2η0

)
τ := ∆

2`
for all s ∈ {0, 1} and i ∈ N such that iτ < η0 do

ρi := iτ
H := H ∪ {ApproximateLearn(ε′, δ′, ρi, s,Aη, `, η0)}

end for
m := 8

ε2(1−2η0)2
ln 16`

δ2

draw a sample Sη
m of m labeled examples from EXη

cccn(c,D)
return argminh∈H errSη

m
(h)

Proof.

We note that this proposition closes the proof of Theorem 1.

In order to prove this lemma, it suffices to see that algorithm LearnWithUp-
perBound (cf. Algorithm 3) can CCCN-learn any concept c from a class that is
CN-learnable under any distribution D when given an upper bound η0 < 0.5 on
η+ and η−.

Let us fix c ∈ C, D ∈ D, ε > 0, δ > 0 and let us assume that we know η0.

From the way τ is set, the double loop of LearnWithUpperBound ensures that
there is a pair (ρ∗, s∗) of values such that ρ∗ is within a distance of τ from ρopt and
s∗ = sopt. Hence, by applying Lemma 2, we know that there is with probability
at least 1− δ

4 −
δ
4 = 1− δ

2 a hypothesis h∗ such that err(h∗) ≤ ε
4 (1− 2η0).

There is a need for a strategy capable with high probability to pick from H
a hypothesis that has error lower than ε. Simple calculations give the following
relation, for any h

P (h(x) 6= tη(x)) = pη+ + (1− p)η−

+ (1− 2η+)P (h(x) = 1, t(x) = 0)

+ (1− 2η−)P (h(x) = 0, t(x) = 1),

where p stands for P (t(x) = 1). Consequently, for any ε-bad hypothesis h, that
is, any hypothesis having error larger than ε, we have

P (h(x) 6= tη(x)) > p+η+ + (1− p+)η− + ε(1− 2η0). (1)
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Besides, P (h∗(x) 6= t(x)) ≤ ε
4 (1− 2η0) implies

P (h∗(x) = 1 6= t(x) = 0) ≤ ε

4
(1− 2η0)

P (h∗(x) = 0 6= t(x) = 1) ≤ ε

4
(1− 2η0),

and, therefore

P (h∗(x) 6= tη(x)) ≤ pη+ + (1− p)η−

+
ε

4
(1− 2η0) · 2(1− η+ − η−)

≤ p+η+ + (1− p+)η− +
ε

2
(1− 2η0). (2)

Equations (1) and (2) say that there is a gap of at least ε
2 (1 − 2η0) between

the error (on noisy patterns) of any ε-bad hypothesis and the error (on noisy
patterns) of h∗. There is henceforth a size m of test sample Sη

m such that the
empirical errors measured on Sη

m of all ε-bad hypotheses are far enough from the
empirical error of h∗, i.e., for any εcut (strictly) within the bounds of (1) and (2),
there is a size m of test sample that guarantees (with high probability) that the
empirical errors on Sη

m of all ε-bad hypotheses are above εcut while the empirical
error of h∗ on Sη

m is below εcut. Letting εcut := p+η+ +(1−p+)η−+ 3ε
4 (1−2η0),

Hbad := {h ∈ H : err(h) > ε} and Gη
m,εcut

:= {h ∈ H : errSη
m

(h) ≤ εcut}, we
have

P (∃h ∈ Hbad ∩Gη
m,εcut

) ≤ |Hbad|P (h ∈ Hbad ∩Gη
m,εcut

) (union bound)

≤ |H| exp
(
−mε2(1− 2η0)2

8

)
(Chernoff bound)

≤ 1
2τ

exp
(
−mε2(1− 2η0)2

8

)
.

In order to have P (∃h ∈ Hbad ∩ Gη
m,εcut

) ≤ δ
4 , it suffices to choose m so that

the right-hand side of the last inequation is bounded from above by δ
4 , i.e., it

suffices to have
m =

8
ε2(1− 2η0)2

ln
16`

δ2

as it is set in LearnWithUpperBound.
Likewise, for h∗, we have

P (h∗ 6∈ Gη
m,εcut

) ≤ exp
(
−mε2(1− 2η0)2

8

)
(Chernoff bound)

≤ 2τ
δ

4
= 2 · δ

8`
· δ
4

≤ δ

4
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for the specific choice of m made.
It directly follows that the hypothesis hmin from H that minimizes the em-

pirical error on Sη
m – for the given value of m – is, with probability at least

1− δ
4 −

δ
4 = 1− δ

2 , a hypothesis that has true error lower than ε. (We note that,
though it may possibly be the case, hmin need not be h∗.)

All in all, we have that when given an upper bound on η+ and η−, and given
access to a polynomial number of labeled data, LearnWithUpperBound outputs
with probability at least 1 − δ a hypothesis with error at most ε. In addition,
since ApproximateLearn controls its running time the running time of LearnWith-
UpperBound is polynomial as well. This closes the proof of Proposition 1. �

4 CPCN=CCCN=CN

In this section we provide a result showing the equality between CPCN and
CCCN. This directly gives the main result of this paper, namely CN = CPCN.

The idea of the proof is that it is possible to build a partition of the input space
X from the partition functions of a CPCN oracle (which define a partition over
S × {0, 1}): this partition is such that the noise process that corrupts the data
within each part is a CCCN noise process. Given a CCCN learning algorithm
A and some condition as for the number of data to draw from the CPCN oracle
to be sure that each part contains enough (or no) data to be CCCN-learned,
hypotheses are learned on each part. These hypotheses are used to relabel a
CPCN sample of an appropriate size, which is in turn input to A to output with
high probability a hypothesis having small error.

Lemma 3
Let c ∈ C and D ∈ D. Let h be a classifier that has error errD(h) ≤ ε. Then, for
any α ∈]0; 1] and any integer ` ≤ α/ε, the probability that h correctly predicts
the labels of the elements of a sample of size ` drawn according to D is greater
than 1− α.

Proof. The probability that h correctly predicts the class of ` elements indepen-
dently drawn according to D is greater than (1 − ε)`. It can be easily checked
that for any 0 ≤ ε ≤ 1, (1− ε)` ≥ 1− `ε ≥ 1− α. �

Lemma 4
Let D ∈ D. Let π1, . . . , πk be a partition of X , let 0 < ε, δ ≤ 1 be two pa-
rameters, let m be an integer and let ` ≥ max(2m/ε,−2 log (δ/k)/ε2). Then,
with a probability greater than 1− δ, any sample S of X containing ` examples
independently drawn according to D will contain at least m elements of each
part πi that satisfies D(πi) ≥ ε, with D(πi) := Px∼D(πi(x) = 1).

Proof. We note that the partition π1, . . . , πk is defined with respect to the
unlabeled space X .
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Let ` ≥ max(2m/ε,−2 log (δ/k)/ε2), let S be a sample containing ` examples
independently drawn according to D, and let mi := |S ∩ πi)|. It comes from
Chernoff bound and the way ` is chosen that, for any 1 ≤ i ≤ k,

P
“ mi

`
≤ D(πi)−

ε

2

”
≤ exp

„
−

`ε2

2

«
≤

δ

k
.

Hence, if πi is such that D(πi) ≥ ε,

P (mi ≤ m) ≤ P
“
mi ≤ `

ε

2

”
≤

δ

k
.

By the union bound

P (∃i : mi ≤ m, D(πi) ≥ ε) ≤ kP ((mi ≤ m), D(πi) ≥ ε)

= k ·
δ

k
= δ.

Therefore, with probability greater than 1− δ, any part πi such that D(πi) ≥ ε
satisfies mi > m. �

Proposition 2
Let C be a class of concepts over X which is in CCCN. Then C is in CPCN.
Stated otherwise: CCCN ⊆ CPCN.

Proof. LetA be a CCCN learning algorithm for C and let p(·, ·, ·) be a polynomial
such that for any target concept c in C, any distribution D ∈ D, any accuracy
parameter ε, any confidence parameter δ and any noise rate bound η0, if A is
given as input a sample S drawn according to EXη

cccn(c,D) (where η = [η+ η−]
and η+, η− ≤ η0) and satisfying |S| ≥ p(1/ε, 1/δ, 1/(1− 2η0)), then A outputs a
hypothesis whose error rate is lower than ε with probability at least 1− δ.

Let Π = {π1, . . . , πk} be a partition of X × {0, 1} and let η = [η1 · · · ηk] be a
vector of noise rates satisfying 0 ≤ ηi ≤ η0 for 1 ≤ i ≤ k. We deduce from Π a
partition Π = (π1, . . . , πl) of X based on the parts πij defined for 1 ≤ i, j ≤ k,
by πij = {x ∈ X |〈x, 1〉 ∈ πi and 〈x, 0〉 ∈ πj}. (It is straightforward to check
that for any x ∈ X , there exist i and j such that x ∈ πij and that πij ∩ πuv 6= ∅
implies i = u and j = v.) For any πi ∈ Π such that πi = πuv, define η+

i := ηu

and η−i := ηv.
Let c ∈ C, let D ∈ D and let 0 < ε, δ ≤ 1 be accuracy and confidence

parameters.
Let n1 ≥ p(1/ε, 4/δ, 1/(1−2η0)), let ε1 := δ/(4ln1), let m := p(1/ε1, 4l/δ, 1/(1−

2η0)) and let n2 ≥ max(2m/ε1,−2 log (δ/(4l))/ε2
1). Note that n2 is polynomial

in 1/ε, 1/δ and 1/(1− 2η0).
Let S2 be a sample of size n2 drawn according to EXΠ,η

cpcn(c,D). From Lemma 4,
with probability at least 1 − δ/4, any part πi such that D(πi) ≥ ε1 satisfies
|S2 ∩ πi| > m. Let I := {i : |S2 ∩ πi| > m}.

For each i ∈ I, run algorithm A on each sample S2 ∩ πi and let hi be the
output classifier. With a probability greater than 1 − δ/4, each hi is such that
PD|πi(x)=1(hi(x) 6= t(x)) ≤ ε1.

Now, let S1 be a new sample of size n1 drawn according to EXΠ,η
cpcn(c,D).
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• Let πi be a part such that D(πi) < ε1. The probability that S1 contains
no element of πi is ≥ (1− ε1)n1 ≥ 1− δ/(4l).

• Let πi be a part such that D(πi) ≥ ε1. From Lemma 3, the probability
that hi computes the correct label of each example of S1 ∩ πi is greater
than 1− δ/(4l).

That is (using the union bound) the probability that S1 contains no element of
a part πi satisfying D(πi) < ε1 and that all elements of S1 are correctly labeled
by hypotheses (hi)i∈I is greater than 1− δ/4.

Finally, relabel the examples of S using the predictions given by hypotheses
(hi)i∈I and run algorithm A on the relabelled sample S̃1. With a probability
greater than 1− δ/4, it will output a hypothesis h such that errD(h) ≤ ε.

Taking everything together, the overall procedure outputs with probability
1− 4 · δ/4 = 1− δ a hypothesis h that has error errD(h) ≤ ε. �

We can therefore state the main result of this paper:

Theorem 2
CN = CCCN = CPCN.

Proof. From the previous section, we know that CN = CCCN. In this sec-
tion, we showed that CCCN ⊆ CPCN and, since CPCN ⊆ CCCN (the CCCN
framework is a particular case of the CPCN framework), CPCN = CCCN. This
trivially gives CN = CPCN. �

5 Bounds on the Noise Rates

In this study, we have restricted ourselves to the case where the upper bound η0

on the noise rates is stricly lower than 1/2. It can be shown that it is possible
to address the case where instead of having an upper bound on the noise rates,
a lower bound η0 > 1/2 is provided. Whichever the oracle to which the learning
procedure is given access, it suffices to flip all the labels of the labelled examples
it produces. Doing that brings the learning problem considered back to the
classical setting where the upper bound on the noise rates is now 1 − η0. The
question of the learnability in the CPCN (or CCCN) framework in the more
general case where some noise rates may be above 1/2 and some other below is
still an open problem. Addressing this latter problem does raise the question on
how the difference between the noise rates, in the CCCN case, especially, affects
the sample complexity (in the present work, as a common upper bound η0 is
assumed on both noise rates η+ and η−, the – absolute – difference |η+ − η−|
does not affect either the sample complexity or the running time).

Another open question is that of the need of having an upper bound on the
noise rates. Even though it is known that in the CN framework such a bound
can be estimated (in polynomial time) through the learning process, it is not
clear whether such an (distribution free) estimation can be carried out for the
CCCN and CPCN cases.
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6 Conclusion and Outlook

This paper presents a particular case of the learnability in the PAC-framework,
where classes of examples are subject to various classification noise settings and
we give two important results, namely, CN = CCCN and CN = CPCN.

An interesting outlook to this work is that of its application to the learning of
noisy perceptrons (Blum et al., 1996; Cohen, 1997; Dunagan & Vempala, 2004)
in the CPCN framework.

Other issues that we have been investigating are those raised in Section 5,
namely, the learnability without bounds – or with weaker bounds – on the noise
rates and the possibility to handle noise rates that can take values both above
and below 1/2. We do think that a first step in this direction consists in using
a lower bound on 1 − η+ − η− in the case of CCCN-learning, with η+ and η−

not constrained to be lower than 1/2, instead of a more restrictive upper bound
η0 < 1/2 on each noise rate.

In the case of the CPCN framework, the extension that consists in assuming
a measure on the labelled input space instead of a partition is an important
issue that we would like to address. A first step toward this kind of study would
be to make assumptions on the measures at hand such as the possibility to
approximate them with piecewise constant measures.

An important topic that is worth a great deal of attention is that of deriving
less demanding algorithms both from the sample complexity and running time
perspectives. In particular, it might be of interest to try to establish polynomial
running time and sample complexities in 1/εk with k lower than 2.

Finally, it will be interesting to think of the consequences of our work on the
problem of learning optimal separating hyperplanes (in finite dimension as well as
in infinite dimensional spaces) from data corrupted with classification noise. One
obvious issue that need be dealt with in this context is how the results that we
have provided in this paper can be transposed to the framework of distribution-
dependent (and large-margin) learning. A second exciting challenge is to be
able to bring to light a strategy to automatically set the soft-margin tradeoff
parameters and the kernel parameters to (or close to) their optimal values when
learning support vector machines from data subject to classification noise. To
tackle those problems, we truly believe that a kernel generalization of the noisy
perceptrons learning mentioned earlier (Blum et al., 1996; Cohen, 1997; Dunagan
& Vempala, 2004) is a relevant starting point.
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